# Consumer Aware Warehouse Management SDMay20-25

Advisor: Goce Trajcevski

Client: Jimmy Paul, Crafty LLC. CTO

Team: Lindsey Sleeth, Omair Ijaz, Andrew Smith, Sam Stifter,

Jameel Kelley, Elijah Buscho, Devin Üner

http://sdmay20-25.sd.ece.iastate.edu/

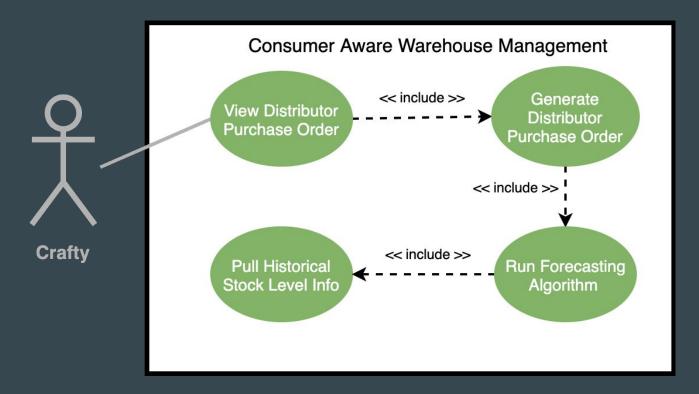
# Client Background - Lindsey

Crafty LLC helps companies enhance their employees life at work by providing offices with food, beverage, and event management



# **Project Motivation - Lindsey**

\$600,000 Annually
Missed Revenue for
20,000 Missed Items


\$100,630 Annually
Lost Value for
15,356 Expired Items

3 Full-Time Employees

Dedicating
50% of Time to Ordering

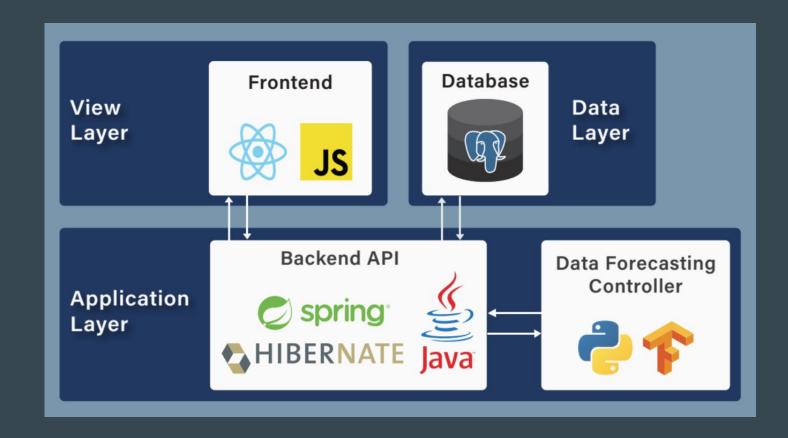
The solution is a forecasting algorithm for inventory management that automates reordering for warehouse stock

# Conceptual Design Diagram - Elijah



**Functional Requirements - Jameel** 




Non-Functional Requirements - Omair

Report Generation in a Timely Manner

(< 2 min 90% of the time)

Handle 1200 Stock Keeping Units (SKUs)

# System Design Sam



# **API Design**

## **API Design - List of All Endpoints - Andrew**

Get Distributor

/distributor/{distributorID}

List All Distributors

/distributors/{regionID}

Get All Distributors Order Schedules

/distributors/scheduleAll/{regionID}

Get Distributor Order Schedule

/distributor/schedule/{distributorID}

List All Distributors Ones with Products

/distributors/withProducts/{regionID}

List All Distributors Ones with Products to Order

/distributors/withProductsToOrder/{regionID}

Get Distributors Products

/distributor/products/{distributorID}

Get Distributor Products with Order Quantity >0

/distributor/products/withPredictions/{distributorID}

List All Regions

/regions

Get Breweries

/breweries/{regionID}

List History of Missed Items

/missedItemsBySku/{skuID}

List Historical Warehouse Inventory Level

/sku\_hist/{skuID}

Add a New Prediction Value

/predictions/add

Get Predictions for a Sku

/predictions/sku/{skuID}

# API Design - Historical Warehouse Inventory Level - Andrew

- Called to get the historical warehouse inventory level
- Used to display on a graph for frontend
- Used by algorithm to generate predictions

#### /sku\_hist/{skuID}

```
"createdAt": "2018-04-02T00:30:06.861+0000"
"createdAt": "2018-04-02T11:00:10.423+0000"
"count": 43
"createdAt": "2018-04-03T11:00:10.828+0000"
"count": 45
"createdAt": "2018-04-04T11:00:11.149+0000"
"count": 46
```

# API Design - Add a New Prediction Value - Sam

- Make a prediction for Order Quantity
- Update the Database
- Communicates with the
   Machine Learning Component

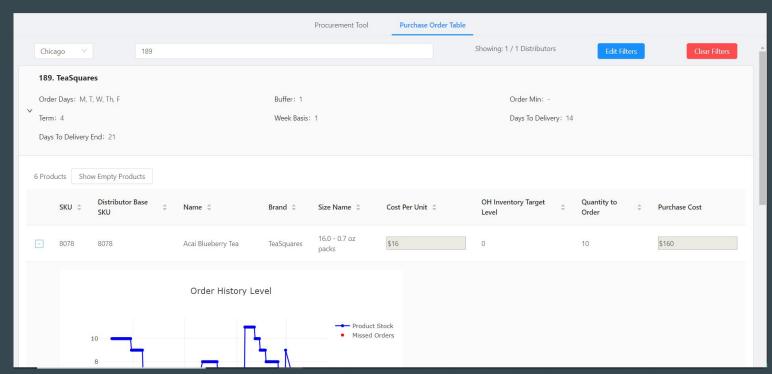
```
/predictions/add
```

```
{
    "sku_id": 7291,
    "qty_to_order": 10
}
```

# API Design - Get Predictions for a Sku - Omair

- All predictions are stored
- The most recent prediction for a SKU can be retrieved DB along with the time stamp
- Will be displayed on the frontend

#### /predictions/sku/{sku}


```
{
    "id": 1,
    "sku_id": 7291,
    "qty_to_order": 10,
    "date": "2020-04-06T19:07:09.197"
}
```

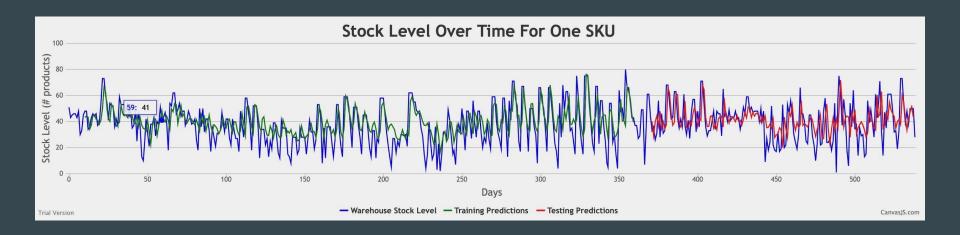
# Frontend Design

# Crafty's System - Lindsey



# Demo - Lindsey




Link

# Machine Learning Design

# **Machine Learning Design - Devin**

- Long Short Term Memory (LSTM) neural network
- Capable of predicting long term and short term trends in data
- Created with Keras and Tensorflow

# Algorithm Test Plan - Devin



# Test Plan - Algorithm - Elijah

- Test SKUs
- Missed Sales
- Client Order History

#### Test Plan

#### Frontend - Jameel

- Manual testing of components upon completion
- Using Postman Collection to check API status and return values
- Using Developer Tools to test XHR Requests (time and deserialization to objects)

#### Backend - Sam

- Manual Tests
  - Create SQL Queries
  - Create Spring Endpoints
  - Compare Endpoint results with SQL results
- CI/CD
  - o Compile and Deploy to Server

# **Engineering Standards and Design Practices - Sam**

- Code Review
- Xtreme Programming
- Model View Controller

# **Lessons Learned - Everyone**

- Backend Omair
  - PostgreSQL databases
  - Working with existing databases can be very difficult to find where and what the data is
  - Complex queries with Spring
  - API design to support a flexible frontend
  - Planning and task distribution is important

#### Frontend

- React Framework
- API Integration
- Robust API Integration on Frontend
- Peer Programming while Teaching

#### Algorithm

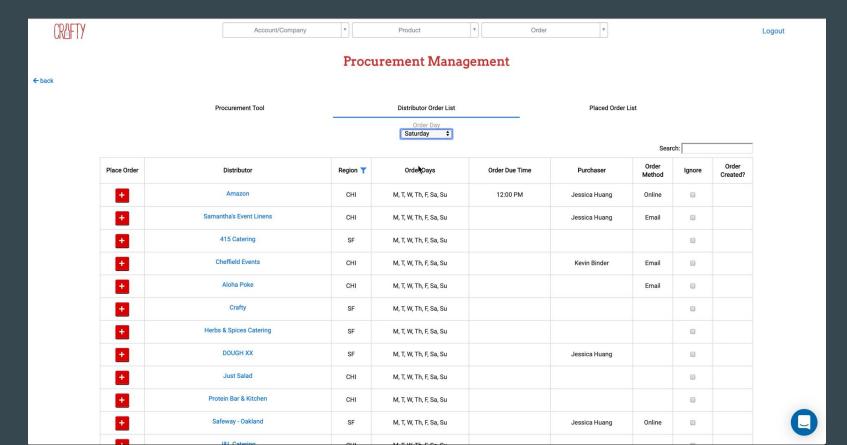
- Working with LSTM neural networks
- Using Tensorflow and Keras
- Data is important
  - Amount of data
  - Knowledge of data

# Thank you!

Questions?

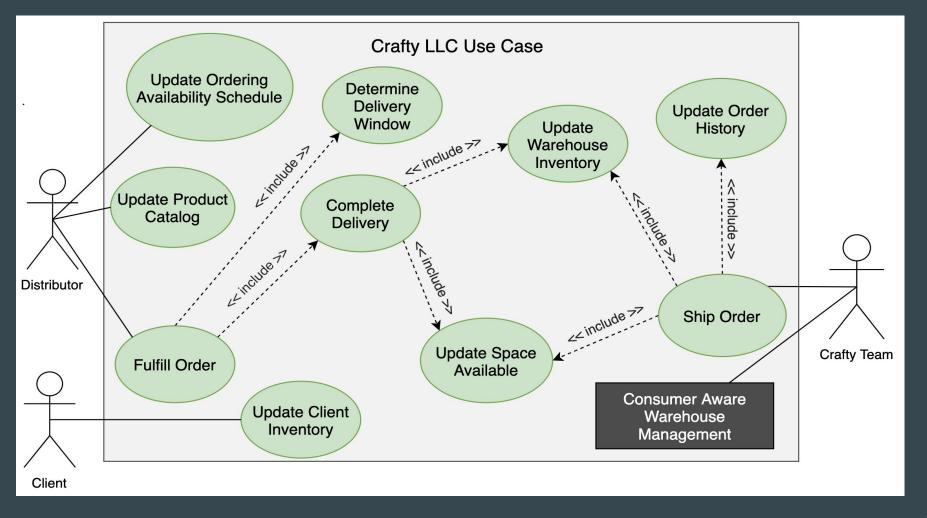
# Existing Approaches 1 (Learning Based Approach)

- Input Variables
  - Past Sales
  - Weather
  - Travel Time of Product
- Advantages
  - Better Prediction of Demand
  - Lowers Missed Sales
- Disadvantages
  - Amount of Resources

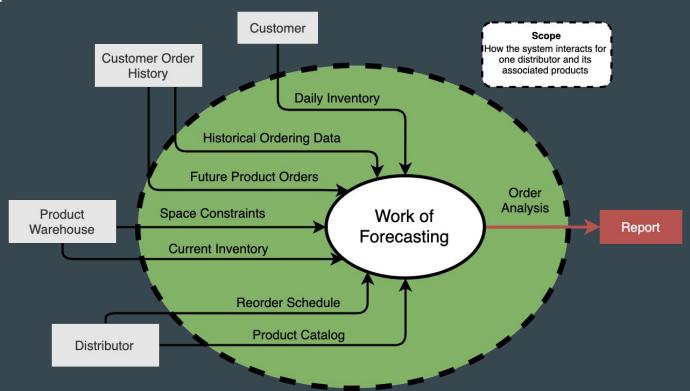

- Relation to Our Solution
  - Past Sales Data
  - Shipping Time
- Differentiation From Our Solution
  - Too Many Input Variables

# Existing Approaches 2 (Regression Based Approach)

- Input Variables
  - Past Sales
  - Seasonal Changes
- Advantages
  - Little Amount of Resources
- Disadvantages
  - o Can't Handle Spikes in Demand
  - Doesn't Figure in Shipping Time


- Relation to Our Solution
  - Past Sales Data
- Differentiation From Our Solution
  - o Doesn't Figure in Shipping Time

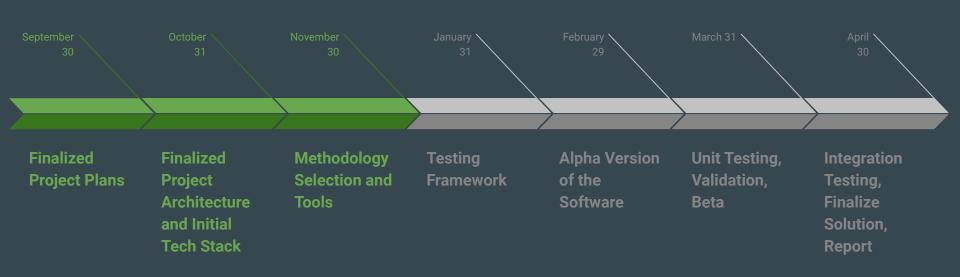
### **Distributor Order List**




# **Implementation**

| Chicago V Bartend Chicago V |                                                                            |                                      |                            |                      |                              |                           |               |                    |             |                      |             |
|-----------------------------|----------------------------------------------------------------------------|--------------------------------------|----------------------------|----------------------|------------------------------|---------------------------|---------------|--------------------|-------------|----------------------|-------------|
| 12                          | Bartend Chicago  Order Method:Active: M, T, W, TH, F,  Address: Order Due: |                                      |                            |                      |                              | Order Minimum             |               | Term               | Buffer      |                      |             |
| ProductID                   | Cost<br><br>Price                                                          | Product Info                         | Reorder<br>Threshold Units | Order Up To<br>Units | OH Inventory<br>(Base Units) | On Hand Units<br>En Route | \$/\$ 1       |                    |             | 1 x                  |             |
|                             |                                                                            |                                      |                            |                      |                              |                           | Amount Needed | Amount To<br>Order | Order Spend | Missed Item<br>Count | Order Stats |
| 21681<br>212858             | \$ 6.29                                                                    | Extra Fancy Long<br>Grain White Rice | 1                          | 3                    | 1(1)                         | 0                         | 2             | 2                  | \$12.58     | 0                    | 1           |
| 13993<br>921389             | \$ 14.05<br>\$ 21.95                                                       | Smart Zip Quart<br>Freezer Bag       | 1                          | 2                    | 1(1)                         | 0                         | 1             | 1                  | \$14.09     | 0                    | ①<br>•      |




# **Conceptual Sketch**



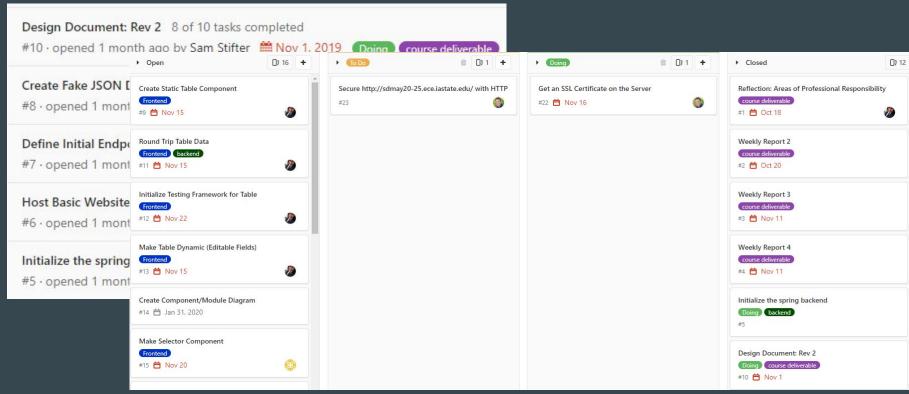
# **Project Plan - Tasks**

**Project Planning Assigned To Everyone Tasks Frontend Team Assigned To Frontend Tasks** (EB, JK, LS) **Backend Team Backend Tasks Assigned To** (AS, OI, SS)

# **Project Plan - Schedule / Milestones**



# Project Plan - Risks


Inaccurate results

Results not clearly understood

Steep learning curve

|            | Impact        |        |          |        |  |  |  |  |
|------------|---------------|--------|----------|--------|--|--|--|--|
|            |               | Minor  | Moderate | Severe |  |  |  |  |
| р          | Very Likely   | Medium | High     | High   |  |  |  |  |
| ě          | Likely        | Low    | High     | High   |  |  |  |  |
| Likelihood | Possible      | Low    | Medium   | High   |  |  |  |  |
| _ =        | Unlikely      | Low    | Medium   | Medium |  |  |  |  |
|            | Very Unlikely | Low    | Medium   | Medium |  |  |  |  |

# **Project Plan - Progress Metrics**



# **Project Vision - Lindsey**

Crafty desires a forecasting algorithm for inventory management that automates reordering for warehouse stock

